E-3-SILYL ALLYL ALCOHOLS VIA ORGANOBORANES

John A. Soderquist* and Jaime Vaquer ${ }^{1}$
Department of Chemistry, University of Puerto Rico
Rio Piedras, Puerto Rico 00931

Abstract

The Brown vinylation of aromatic aldehydes was developed to provide a simple, efficient route to pure E-1-aryl-2-methyl-3-silyl-2-propen-1-ols (3).

Recently, we examined the hydroboration of 1-trialkylsilyl-1-alkynes with 9-borabicyclo[3.3.1]nonane ($9-\mathrm{BBN}$) with the finding that the triisopropylsilyl group is sufficiently large so as to force the boron atom to the internal position. ${ }^{2}$ This gives Z-2-boryl-1-alkenylsilanes (e.g. 1) cleanly. The traditional difficulties which are encountered with the hydroboration of alkynes with $9-\mathrm{BBN}$, namely stoichiometric control with terminal alkynes and regiochemical control with internal alkynes, are overcome with this substrate. These silyl-Markovnikov vinylboranes, 1 , undergo an extremely efficient cross-coupling reaction with complete retention of configuration via the Suzuki protocol ${ }^{3}$ to provide a simple entry to E - β, β-disubstituted vinylsilanes. ${ }^{4}$ We were intrigued by the possibility that 1 could provide access to $E-3$-silyl allyl alcohols (i.e. 3) through a 1,2 -addition to aldehydes. This reactivity is observed for B-vinyl derivatives of $9-\mathrm{BBN},{ }^{5}$ because this system combines an accessible Lewis acid site with a rigid ring which prevents the reduction of the aldehyde through a β-hydride transfer process. ${ }^{5.8}$ We found this reaction of 1 with aromatic aldehydes to provide 3 cleanly. These results are summarized in Table $1 .{ }^{7}$

Reaction mixtures were monitored by GC for the disappearance of starting aldehyde. By ${ }^{11} \mathrm{~B}$ NMR, the disappearance of 1 ($\delta 75 \mathrm{ppm}$) gives rise to 2 ($\delta 54 \mathrm{ppm}$) as a broadened signal during the reaction, suggesting that equilibrium complexation processes are occurring prior to complete conversion. ${ }^{8}$ With an excess of the aldehyde, we observed some oxddation of 2 to give the corresponding enone together with the reduced aldehyde product (i.e. a benzyloxy-9-BBN derivative). This probably occurs through the boron equivalent of an Oppenauer oxidation.

Unfortunately, aliphatic aldehydes failed to give significant amounts of the desired allylic alcohols under a variety of conditions, either failing to react with 1 or giving product mixtures. In some cases, we observed the partial protonolysis of 1. Despite this limitation, the Brown vinylation of aromatic aldehydes provides a highly useful entry to stereodefined allylic alcohols which contain the silyl functionality.

Table 1. Silylvinylation of Aromatic Aldehydes.

ArCHO	3	Yield of $\mathbf{3}^{\mathbf{a}}$
PhCHO	3a	70
$p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	3b	75
$p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	3c	69
$p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	3d	75
$m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	3e	61

a Analytically-pure material isolated by flash chromatography.

REFERENCES AND NOTES

1. Graduate student supported by the NSF EPSCoR Program of Puerto Rico.
2. Soderquist, J. A.; Colberg, J. C.; Del Valle, L. J. Am. Chem. Soc. 1989, 111, 4873.
3. (a) Mtyaura, N.: Satoh, M.: Suzukd, A. Tetrahedron 1983, 39, 3271 . (b) Mlyaura, N.; Ishlyama, T.; Sasaks, H.; Ishikawa, M.; Satoh, M.; Suzukd, A. J. Am. Chem. Soc. 1989, 111,314 and references cited therein.
4. Soderquist. J. A.; Colberg, J. C. SynLett 1989, 1, 25.
5. Brown, H. C.: Jacob III, P. J. Org. Chem. 1977, 42, 579.
6. (a) Brown, H. C.; Chandrasekharan, J.; Ramachandran, P. V. J. Am. Chem. Soc. 1988, 110, 1539. (b) Midland, M. M. Chem. Rev. 1989, 89, 1553. (c) Pelter, A.; Smith, K.; Brown, H. C. Borane Reagents; Academic Press: London, 1988.
7. The following procedure is representative: Under a nitrogen atmosphere, a stirred mixture of 1 ($1.7 \mathrm{~g}, 5.3$ mmol) and p-chlorobenzaldehyde ($0.76 \mathrm{~g}, 5.2 \mathrm{mmol}$) was heated for 5 h at $105-110^{\circ} \mathrm{C}$, allowed to cool to room temperature, and dry pentane (20 mL) was added. The solution was cooled to $0^{\circ} \mathrm{C}$, and ethanolarnine $(0.33 \mathrm{~g}, 5.3$ mmol) was added dropwise. The cold bath was removed and, after 1 h at room temperature, the mixture was flitered to remove the solid B-(β-aminoethoxy)-9-BBN. Pure $3 d(1.32 \mathrm{~g}, 75 \%$) was isolated by flash chromatography (230-400 mesh SiO_{2}. $95: 5$ pentane-ether). The compounds 3 gave acceptable analytical data for the structures shown and revealed the following significant spectroscopic features: $3 \mathrm{a}:{ }^{1} \mathrm{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right) \delta 1.0-1.3(\mathrm{~m}, 21 \mathrm{H}), 1.71$ $(\mathrm{s}, 3 \mathrm{H}), 2.79(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 7.3-7.4(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (CDCl $\left.{ }_{3}\right) 880.3(\mathrm{C}-1), 156.1$ (C2), 118.0 (C-3), 18.5 (Me), $12.7,18.9$ ($\mathrm{t}-\mathrm{Pr}$), $142.1,126.3,128.1,127.2$ (Ar: $i, 0, \mathrm{~m}, \mathrm{p}$) ppm . MS $\mathrm{m} / \mathrm{z} 261$ (100 , M-$\left.(t-\mathrm{Pr})^{+}\right)$. IR (neat) $3400(\mathrm{OH}) \mathrm{cm}^{-1} 3 \mathrm{~b}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{5}\right) \delta 1.0-1.2(\mathrm{mi}, 21 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$, $5.06(\mathrm{~s}, 1 \mathrm{H}) .5 .74(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.22(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (CDCly $\delta 80.3$ (C1), 156.1 (C-2): 117.7 (C-3), 18.7 (Me), 12.1. 18.8 (i-Pr), 139.2, 128.0, 126.3, $136.9,21.0$ (Ar: $40 . \mathrm{m}, \mathrm{p}, \mathrm{Me}$) ppm. MS
 ${ }^{1 H}$), 3.77 ($\mathrm{s}, 3 \mathrm{H}$). 5.03 (s, 1 H). $5.72(\mathrm{~s}, 1 \mathrm{H}) .6 .85(\mathrm{~d} .2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.26(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 80.1(\mathrm{C}-1), 156.3(\mathrm{C}-2), 117.7(\mathrm{C}-3), 18.9(\mathrm{Me}), 12.3,18.9$ ($\mathrm{t}-\mathrm{Pr}$), 134.5, $127.8,113.8,159.1,55.0(\mathrm{Ar}:$ i, om, p, OMe) ppm. MS m/z $291\left(28, \mathrm{M}-(t \mathrm{PT})^{+1}\right) ; 75$ (100). IR (neat) $3440(\mathrm{OH}) \mathrm{cm}^{-1}$. 3d: ${ }^{1} \mathrm{H}$ NMR (CDCl) $\delta 1.0-$ $1.2(\mathrm{~m}, 21 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 7.2-7.25(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (C0DJ $\delta 79.8$ (C-1), 156.1 (C-2), 118.8 (C-3), 18.4 (Me), 12.1, 18.8 (t Pr), $141.1,128.1,127.6,132.7$ (Ar: $4,0, \mathrm{~m} . \mathrm{p}) \mathrm{ppm} . \mathrm{MS}\left({ }^{35} \mathrm{Cl}\right)$ $\mathrm{m} / \mathrm{z} 295$ ($\left.100 \mathrm{M}-(t-\mathrm{Pr})^{\prime}\right)$ IR (neat) $3400(\mathrm{OH}) \mathrm{cm}^{-1} .3 \mathrm{e}$: 1 H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.0-1.2(\mathrm{~m}, 21 \mathrm{H}), 1.50(\mathrm{~s} .3 \mathrm{H}), 2.58(\mathrm{~s}$. $1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~s} .1 \mathrm{H}), 7.10(\mathrm{~s}, 3 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (CDCly) $880.3(\mathrm{C}-1), 155.5(\mathrm{C}-2), 120.0$ (C-3), 18.2 (Me), 12.2, 18.8 (t-Pr), 144.4, 126.6, 134.2, 129.4, 124.4, 127.4 (Ar: C-1 to C-6) ppm. MS m/z 295 ($\left.74, \mathrm{M}-(t-\mathrm{Pr})^{\mathrm{M}}\right), 61$ (100). IR (neat) 3400 (OH) cm^{-1}.
8. Brown, H. C.; Soderquist, J. A. J. Org. Chem. 1980. 45, 846.
